Monday, October 27, 2008

Java Programs

Write ur questions & u can ask 4 more progs in comments section. or go tohttp://sites.google.com/site/javaprogramsite/.orhttp://www.javaprogsite2.blogspot.com/.
We feel Happy to Help u.

1 comment:

  1. /********** Implementation of Matrix Operation Using Arrays *********/
    // Matrix Addtion, Subtraction, Transpose, Multiplication

    import matrix;

    class Matrix
    {
    public static void main(String args[])
    {
    int i,j,k;
    int mat1 [][]={ {1,2,3}, {4,5,6}, {7,8,9} };
    int mat2 [][]={ {10,11,12}, {13,14,15}, {16,17,18} };

    //Matrix A
    System.out.println("\nMatrix A:");
    for(i=0;i< 3;i++)
    {
    for(j=0;j< 3;j++)
    System.out.print("\t"+mat1[i][j]);
    System.out.println("");
    }

    //Matrix B
    System.out.println("\nMatrix B:");
    for(i=0;i< 3;i++)
    {
    for(j=0;j< 3;j++)
    System.out.print("\t"+mat2[i][j]);
    System.out.println("");
    }
    System.out.println("\nOperation ON Matrices \n1.Addition \n");
    int sum [][] = new int [3][3];
    for(i=0;i< 3;i++)
    {
    for(j=0;j< 3;j++)
    {
    sum[i][j] = mat1[i][j] + mat2[i][j];
    System.out.print("\t" + sum[i][j]);
    }

    System.out.println("");
    }

    System.out.println("2.Subtraction\n");
    int diff[][] = new int[3][3];
    for(i=0;i< 3;i++)
    {
    for(j=0;j< 3;j++)
    {
    diff [i][j] = mat1[i][j] - mat2[i][j];
    System.out.print("\t"+ diff[i][j]);
    }
    System.out.println("");
    }

    System.out.println("3. Transpose Of A\n");
    int trans[][] = new int[3][3];
    for(i=0;i< 3;i++)
    {
    for(j=0;j< 3;j++)
    {
    trans [i][j] = mat1[j][i];
    System.out.print("\t"+ trans[i][j]);
    }
    System.out.println("");
    }
    System.out.println("4.Multiplication\n");
    int prod[][] = new int[3][3];
    for(i=0;i< 3;i++)
    {
    for(j=0;j< 3;j++)
    {
    prod[i][j] = 0;
    {
    for(k=0;k< 3;k++)
    prod[i][j] = prod[i][j]+mat1[i][k]*mat2[k][j];
    }
    System.out.print("\t"+ prod[i][j]);
    }
    System.out.println("");

    }
    }
    }

    /************* OUTPUT ***************



    Matrix A:
    1 2 3
    4 5 6
    7 8 9

    Matrix B:
    10 11 12
    13 14 15
    16 17 18

    Operation ON Matrices
    1.Addition

    11 13 15
    17 19 21
    23 25 27
    2.Subtraction

    -9 -9 -9
    -9 -9 -9
    -9 -9 -9
    3. Transpose Of A

    1 4 7
    2 5 8
    3 6 9
    4.Multiplication

    84 90 96
    201 216 231
    318 342 366
    */

    ReplyDelete